smol-gilbraltar/openlibm/ld80/s_remquol.c

167 lines
4.1 KiB
C
Raw Normal View History

2024-12-20 22:45:12 +00:00
/* @(#)e_fmod.c 1.3 95/01/18 */
/*-
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <sys/types.h>
#include <machine/ieee.h>
#include <float.h>
#include <openlibm_math.h>
#include <stdint.h>
#include "math_private.h"
#define BIAS (LDBL_MAX_EXP - 1)
/*
* These macros add and remove an explicit integer bit in front of the
* fractional mantissa, if the architecture doesn't have such a bit by
* default already.
*/
#ifdef LDBL_IMPLICIT_NBIT
#define LDBL_NBIT 0
#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
#define HFRAC_BITS EXT_FRACHBITS
#else
#define LDBL_NBIT 0x80000000
#define SET_NBIT(hx) (hx)
#define HFRAC_BITS (EXT_FRACHBITS - 1)
#endif
#define MANL_SHIFT (EXT_FRACLBITS - 1)
static const long double Zero[] = {0.0L, -0.0L};
/*
* Return the IEEE remainder and set *quo to the last n bits of the
* quotient, rounded to the nearest integer. We choose n=31 because
* we wind up computing all the integer bits of the quotient anyway as
* a side-effect of computing the remainder by the shift and subtract
* method. In practice, this is far more bits than are needed to use
* remquo in reduction algorithms.
*
* Assumptions:
* - The low part of the mantissa fits in a manl_t exactly.
* - The high part of the mantissa fits in an int64_t with enough room
* for an explicit integer bit in front of the fractional bits.
*/
long double
remquol(long double x, long double y, int *quo)
{
int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */
uint32_t hy;
uint32_t lx,ly,lz;
uint32_t esx, esy;
int ix,iy,n,q,sx,sxy;
GET_LDOUBLE_WORDS(esx,hx,lx,x);
GET_LDOUBLE_WORDS(esy,hy,ly,y);
sx = esx & 0x8000;
sxy = sx ^ (esy & 0x8000);
esx &= 0x7fff; /* |x| */
esy &= 0x7fff; /* |y| */
SET_LDOUBLE_EXP(x,esx);
SET_LDOUBLE_EXP(y,esy);
/* purge off exception values */
if((esy|hy|ly)==0 || /* y=0 */
(esx == BIAS + LDBL_MAX_EXP) || /* or x not finite */
(esy == BIAS + LDBL_MAX_EXP &&
((hy&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */
return (x*y)/(x*y);
if(esx<=esy) {
if((esx<esy) ||
(hx<=hy &&
(hx<hy ||
lx<ly))) {
q = 0;
goto fixup; /* |x|<|y| return x or x-y */
}
if(hx==hy && lx==ly) {
*quo = 1;
return Zero[sx!=0]; /* |x|=|y| return x*0*/
}
}
/* determine ix = ilogb(x) */
if(esx == 0) { /* subnormal x */
x *= 0x1.0p512;
GET_LDOUBLE_WORDS(esx,hx,lx,x);
ix = esx - (BIAS + 512);
} else {
ix = esx - BIAS;
}
/* determine iy = ilogb(y) */
if(esy == 0) { /* subnormal y */
y *= 0x1.0p512;
GET_LDOUBLE_WORDS(esy,hy,ly,y);
iy = esy - (BIAS + 512);
} else {
iy = esy - BIAS;
}
/* set up {hx,lx}, {hy,ly} and align y to x */
hx = SET_NBIT(hx);
lx = SET_NBIT(lx);
/* fix point fmod */
n = ix - iy;
q = 0;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;}
else {hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;}
q <<= 1;
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;q++;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) { /* return sign(x)*0 */
*quo = (sxy ? -q : q);
return Zero[sx!=0];
}
while(hx<(1ULL<<HFRAC_BITS)) { /* normalize x */
hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;
iy -= 1;
}
if (iy < LDBL_MIN_EXP) {
esx = (iy + BIAS + 512) & 0x7fff;
SET_LDOUBLE_WORDS(x,esx,hx,lx);
x *= 0x1p-512;
GET_LDOUBLE_WORDS(esx,hx,lx,x);
} else {
esx = (iy + BIAS) & 0x7fff;
}
SET_LDOUBLE_WORDS(x,esx,hx,lx);
fixup:
y = fabsl(y);
if (y < LDBL_MIN * 2) {
if (x+x>y || (x+x==y && (q & 1))) {
q++;
x-=y;
}
} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
q++;
x-=y;
}
GET_LDOUBLE_EXP(esx,x);
esx ^= sx;
SET_LDOUBLE_EXP(x,esx);
q &= 0x7fffffff;
*quo = (sxy ? -q : q);
return x;
}