smol-gilbraltar/openlibm/ld128/e_sinhl.c
2024-12-20 23:45:12 +01:00

104 lines
3.1 KiB
C

/* @(#)e_sinh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* sinhl(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinhl(-x) = -sinhl(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x)
* 2
*
* 25 <= x <= lnovft : sinhl(x) := expl(x)/2
* lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2)
* ln2ovft < x : sinhl(x) := x*shuge (overflow)
*
* Special cases:
* sinhl(x) is |x| if x is +INF, -INF, or NaN.
* only sinhl(0)=0 is exact for finite x.
*/
#include <openlibm_math.h>
#include "math_private.h"
static const long double one = 1.0, shuge = 1.0e4931L,
ovf_thresh = 1.1357216553474703894801348310092223067821E4L;
long double
sinhl(long double x)
{
long double t, w, h;
u_int32_t jx, ix;
ieee_quad_shape_type u;
/* Words of |x|. */
u.value = x;
jx = u.parts32.mswhi;
ix = jx & 0x7fffffff;
/* x is INF or NaN */
if (ix >= 0x7fff0000)
return x + x;
h = 0.5;
if (jx & 0x80000000)
h = -h;
/* Absolute value of x. */
u.parts32.mswhi = ix;
/* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */
if (ix <= 0x40044000)
{
if (ix < 0x3fc60000) /* |x| < 2^-57 */
if (shuge + x > one)
return x; /* sinh(tiny) = tiny with inexact */
t = expm1l (u.value);
if (ix < 0x3fff0000)
return h * (2.0 * t - t * t / (t + one));
return h * (t + t / (t + one));
}
/* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */
if (ix <= 0x400c62e3) /* 11356.375 */
return h * expl (u.value);
/* |x| in [log(maxdouble), overflowthreshold]
Overflow threshold is log(2 * maxdouble). */
if (u.value <= ovf_thresh)
{
w = expl (0.5 * u.value);
t = h * w;
return t * w;
}
/* |x| > overflowthreshold, sinhl(x) overflow */
return x * shuge;
}