138 lines
3.5 KiB
C
138 lines
3.5 KiB
C
/* $OpenBSD: s_expm1l.c,v 1.2 2011/07/20 21:02:51 martynas Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/* expm1l.c
|
|
*
|
|
* Exponential function, minus 1
|
|
* Long double precision
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* long double x, y, expm1l();
|
|
*
|
|
* y = expm1l( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns e (2.71828...) raised to the x power, minus 1.
|
|
*
|
|
* Range reduction is accomplished by separating the argument
|
|
* into an integer k and fraction f such that
|
|
*
|
|
* x k f
|
|
* e = 2 e.
|
|
*
|
|
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
|
|
* in the basic range [-0.5 ln 2, 0.5 ln 2].
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20
|
|
*
|
|
* ERROR MESSAGES:
|
|
*
|
|
* message condition value returned
|
|
* expm1l overflow x > MAXLOG MAXNUM
|
|
*
|
|
*/
|
|
|
|
#include <openlibm_math.h>
|
|
|
|
static const long double MAXLOGL = 1.1356523406294143949492E4L;
|
|
|
|
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
|
|
-.5 ln 2 < x < .5 ln 2
|
|
Theoretical peak relative error = 3.4e-22 */
|
|
|
|
static const long double
|
|
P0 = -1.586135578666346600772998894928250240826E4L,
|
|
P1 = 2.642771505685952966904660652518429479531E3L,
|
|
P2 = -3.423199068835684263987132888286791620673E2L,
|
|
P3 = 1.800826371455042224581246202420972737840E1L,
|
|
P4 = -5.238523121205561042771939008061958820811E-1L,
|
|
|
|
Q0 = -9.516813471998079611319047060563358064497E4L,
|
|
Q1 = 3.964866271411091674556850458227710004570E4L,
|
|
Q2 = -7.207678383830091850230366618190187434796E3L,
|
|
Q3 = 7.206038318724600171970199625081491823079E2L,
|
|
Q4 = -4.002027679107076077238836622982900945173E1L,
|
|
/* Q5 = 1.000000000000000000000000000000000000000E0 */
|
|
|
|
/* C1 + C2 = ln 2 */
|
|
C1 = 6.93145751953125E-1L,
|
|
C2 = 1.428606820309417232121458176568075500134E-6L,
|
|
/* ln 2^-65 */
|
|
minarg = -4.5054566736396445112120088E1L;
|
|
static const long double huge = 0x1p10000L;
|
|
|
|
long double
|
|
expm1l(long double x)
|
|
{
|
|
long double px, qx, xx;
|
|
int k;
|
|
|
|
/* Overflow. */
|
|
if (x > MAXLOGL)
|
|
return (huge*huge); /* overflow */
|
|
|
|
if (x == 0.0)
|
|
return x;
|
|
|
|
/* Minimum value. */
|
|
if (x < minarg)
|
|
return -1.0L;
|
|
|
|
xx = C1 + C2;
|
|
|
|
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
|
|
px = floorl (0.5 + x / xx);
|
|
k = px;
|
|
/* remainder times ln 2 */
|
|
x -= px * C1;
|
|
x -= px * C2;
|
|
|
|
/* Approximate exp(remainder ln 2). */
|
|
px = (((( P4 * x
|
|
+ P3) * x
|
|
+ P2) * x
|
|
+ P1) * x
|
|
+ P0) * x;
|
|
|
|
qx = (((( x
|
|
+ Q4) * x
|
|
+ Q3) * x
|
|
+ Q2) * x
|
|
+ Q1) * x
|
|
+ Q0;
|
|
|
|
xx = x * x;
|
|
qx = x + (0.5 * xx + xx * px / qx);
|
|
|
|
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
|
|
We have qx = exp(remainder ln 2) - 1, so
|
|
exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
|
|
px = ldexpl(1.0L, k);
|
|
x = px * qx + (px - 1.0);
|
|
return x;
|
|
}
|