- Canopy uses a [map instead of a hashtable](https://github.com/Engil/Canopy/issues/30#issuecomment-215010365), [tags](https://hannes.nqsb.io/tags) now contains a list of tags ([PR here](https://github.com/Engil/Canopy/pull/39)), both thanks to voila! I also use the [new CSS](https://github.com/Engil/Canopy/pull/38) from Engil
- There is a [CVE for OCaml <=4.03](http://www.openwall.com/lists/oss-security/2016/04/29/1)
- [Mirage 2.9.0](https://github.com/mirage/mirage/pull/534) was released, which integrates support of the logs library
- This blog post has an accompanied [MirageOS security advisory](https://mirage.io/blog/MSA00)
Roughly 2 weeks ago, [Engil](https://github.com/Engil) informed me that a TLS alert pops up in his browser sometimes when he reads this website. His browser reported that the [message authentication code](https://en.wikipedia.org/wiki/Message_authentication_code) was wrong. From [RFC 5246](https://tools.ietf.org/html/rfc5246): This message is always fatal and should never be observed in communication between proper implementations (except when messages were corrupted in the network).
I tried hard, but could not reproduce, but was very worried and was eager to find the root cause (some little fear remained that it was in our TLS stack). I setup this website with some TLS-level tracing (extending the code from our [TLS handshake server](https://tls.openmirage.org)). We tried to reproduce the issue with traces and packet captures (both on client and server side) in place from our computer labs office with no success. Later, Engil tried from his home and after 45MB of wire data, ran into this issue. Finally, evidence! Isolating the TCP flow with the alert resulted in just about 200KB of packet capture data (TLS ASCII trace around 650KB).
What is happening on the wire? After some data is successfully transferred, at some point the client sends an encrypted alert (see above). The TLS session used a RSA key exchange and I could decrypt the TLS stream with wireshark, which revealed that the alert was indeed a bad record MAC. Wireshark's "follow SSL stream" showed all client requests, but not all server responses. The TLS level trace from the server showed properly encrypted data. I tried to spot the TCP payload which caused the bad record MAC, starting from the alert in the client capture (the offending TCP frame should be closely before the alert).
There is plaintext data which looks like a HTTP request in the TCP frame sent by the server to the client? WTF? This should never happen! The same TCP frame on the server side looked even more strange: it had an invalid checksum.
This at least explains why we were not able to reproduce from our office: usually, TCP frames with invalid checksums are dropped by the receiving TCP stack, and the sender will retransmit TCP frames which have not been acknowledged by the recipient. However, this mechanism only works if the checksums haven't been changed by a well-meaning middleman to be correct! Our traces are from a client behind a router doing [network address translation](https://en.wikipedia.org/wiki/Network_address_translation), which has to recompute the [TCP checksum](https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Checksum_computation) because it modifies destination IP address and port. It seems like this specific router does not validate the TCP checksum before recomputing it, so it replaced the invalid TCP checksum with a valid one.
The ethernet, IP, and TCP headers are in total 54 bytes, thus we have to compare starting at 0x0036 in the screenshot above. The first 74 bytes (till 0x007F in the screenshot, 0x0049 in the text dump) are very much the same, but then they diverge (for another 700 bytes).
I manually computed the TCP checksum using the TCP/IP payload from the TLS trace, and it matches the one reported as invalid. Thus, a big relief: both the TLS nor the TCP/IP stack have used the correct data. Our memory disclosure issue must be after the [TCP checksum is computed](https://github.com/mirage/mirage-tcpip/blob/1617953b4674c9c832786c1ab3236b91d00f5c25/tcp/wire.ml#L78). After this:
* the [mac addresses are put](https://github.com/mirage/mirage-tcpip/blob/1617953b4674c9c832786c1ab3236b91d00f5c25/lib/ipv4.ml#L126) into the ethernet frame
* the frame is then passed to [mirage-net-xen for sending](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L538) via the Xen hypervisor.
As mentioned [earlier](https://hannes.nqsb.io/Posts/OCaml) I'm still using mirage-net-xen release 1.4.1.
Communication with the Xen hypervisor is done via shared memory. The memory is allocated by mirage-net-xen, which then grants access to the hypervisor using [Xen grant tables](http://wiki.xen.org/wiki/Grant_Table). The TX protocol is implemented [here in mirage-net-xen](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L84-L132), which includes allocation of a [ring buffer](https://github.com/mirage/shared-memory-ring/blob/2955bf502c79bc963a02d090481b0e8958cc0c49/lwt/lwt_ring.mli). The TX protocol also has implementations for writing requests and waiting for responses, both of which are identified using a 16bit integer. When a response has arrived from the hypervisor, the respective page is returned into the pool of [shared pages](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L134-L213), to be reused by the next packet to be transmitted.
Instead of a whole page (4096 byte) per request/response, each page is [split into two blocks](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L194-L198) (since the most common [MTU](https://en.wikipedia.org/wiki/Maximum_transmission_unit) for ethernet is 1500 bytes). The [identifier in use](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L489-L490) is the grant reference, which might be unique per page, but not per block.
Thus, when two blocks are requested to be sent, the first [polled response](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L398) will immediately [release](https://github.com/mirage/mirage-net-xen/blob/541e86f53cb8cf426aabdd7f090779fc5ea9fe93/lib/netif.ml#L182-L185) both into the list of free blocks. When another packet is sent, the block still waiting to be sent in the ringbuffer can be reused. This leads to corrupt data being sent.
The fix was already done [back in December](https://github.com/mirage/mirage-net-xen/commit/47de2edfad9c56110d98d0312c1a7e0b9dcc8fbf) to the master branch of mirage-net-xen, and has now been [backported to the 1.4 branch](https://github.com/mirage/mirage-net-xen/pull/40/commits/ec9b1046b75cba5ae3473b2d3b223c3d1284489d). In addition, a patch to [avoid collisions on the receiving side](https://github.com/mirage/mirage-net-xen/commit/0b1e53c0875062a50e2d5823b7da0d8e0a64dc37) has been applied to both branches (and released in versions 1.4.2 resp. 1.6.1).
What can we learn from this? Read the interface documentation (if there is any), and make sure unique identifiers are really unique. Think about the lifecycle of pieces of memory. Investigation of high level bugs pays off, you might find some subtle error on a different layer. There is no perfect security, and code only gets better if more people read and understand it.
The issue was in mirage-net-xen since its initial release, but only occured under load, and thanks to reliable protocols, was silently discarded (an invalid TCP checksum leads to a dropped frame and retransmission of its payload).
We have seen plain data in a TLS encrypted stream. The plain data was intended to be sent to the dom0 for logging access to the webserver. The [same code](https://github.com/mirleft/btc-pinata/blob/master/logger.ml) is used used in our [Piñata](http://ownme.ipredator.se), thus it could have been yours (although I tried hard and couldn't get the Piñata to leak data).
Certainly, interfacing the outside world is complex. The [mirage-block-xen](https://github.com/mirage/mirage-block-xen) library uses a similar protocol to access block devices. From a brief look, that library seems to be safe (using 64bit identifiers).