cachet/lib/cachet.mli

159 lines
6 KiB
OCaml
Raw Normal View History

2024-11-07 19:11:22 +00:00
type bigstring =
(char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
module Bstr : sig
(** A read-only bigstring. *)
type t = private bigstring
val of_bigstring : bigstring -> t
val length : t -> int
val get : t -> int -> char
val get_int8 : t -> int -> int
val get_uint8 : t -> int -> int
val get_int16_ne : t -> int -> int
val get_int16_le : t -> int -> int
val get_int16_be : t -> int -> int
val get_int32_ne : t -> int -> int32
val get_int32_le : t -> int -> int32
val get_int32_be : t -> int -> int32
val get_int64_ne : t -> int -> int64
val get_int64_le : t -> int -> int64
val get_int64_be : t -> int -> int64
val sub : t -> off:int -> len:int -> t
val sub_string : t -> off:int -> len:int -> string
val to_string : t -> string
val blit_to_bytes :
t -> src_off:int -> bytes -> dst_off:int -> len:int -> unit
val is_empty : t -> bool
(*
val is_prefix : affix:string -> t -> bool
val is_infix : affix:string -> t -> bool
val is_suffix : affix:string -> t -> bool
val for_all : (char -> bool) -> t -> bool
val exists : (char -> bool) -> t -> bool
val equal : t -> t -> bool
val compare : t -> t -> int
val with_range : ?first:int -> ?len:int -> t -> t
val with_index_range : ?first:int -> ?last:int -> t -> t
val trim : ?drop:(char -> bool) -> t -> t
val span : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) -> t -> t * t
val take : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) -> t -> t
val drop : ?rev:bool -> ?min:int -> ?max:int -> ?sat:(char -> bool) -> t -> t
val cut : ?rev:bool -> sep:string -> t -> (t * t) option
val cuts : ?rev:bool -> ?empty:bool -> sep:string -> t -> t list
*)
end
type slice = private { offset: int; length: int; payload: Bstr.t }
(** A slice is an aligned segment of bytes (according to the [pagesize]
specified by the cache, see {!val:make}) with its absolute position into the
underlying {i block-device} and size. *)
val pp_slice : Format.formatter -> slice -> unit
val bstr_of_slice : ?logical_address:int -> slice -> Bstr.t
type 'fd map = 'fd -> pos:int -> int -> bigstring
(** A value [map : 'fd map] when applied [map fd ~pos len] reads a
{!type:bigstring} at [pos]. [map] must return as much data as is available,
though never more than [len] bytes. [map] never fails. Instead, an empty
[bigstring] must be returned if e.g. the position is out of range.
Depending on how the cache is configured (see {!val:make}), [map] never
read more than [pagesize] bytes. *)
(** {2: Note about schedulers and [Cachet].}
[Cachet] assumes that {!type:map} is {b atomic}, in other words: {!type:map}
is a unit of work that is indivisible and guaranteed to be executed as a
single, coherent, and uninterrupted operation.
In this way, the [map] function is considered as a "direct" computation that
does {b not} interact with a scheduler. However, reading a page can take
time. It may therefore be necessary to add a cooperation point after
{!val:load} or the user-friendly functions.
These functions can read one or more pages. {!val:load} reads one page at
most. *)
type 'fd t
val fd : 'fd t -> 'fd
val cache_hit : 'fd t -> int
(** [cache_hit t] is the number of times a load hit the cache. *)
val cache_miss : 'fd t -> int
(** [cache_miss t] is the number of times a load didn't hit the cache. *)
val copy : 'fd t -> 'fd t
(** [copy t] creates a new, empty cache using the same [map] function. *)
val make : ?cachesize:int -> ?pagesize:int -> map:'fd map -> 'fd -> 'fd t
(** [make ~cachesize ~pagesize ~map fd] creates a new, empty cache using [map]
and [fd] for reading [pagesize] bytes. The size of the cache is [cachesize].
@raise Invalid_argument if either [cachesize] or [pagesize] is not a power
of two. *)
val load : 'fd t -> ?len:int -> int -> slice option
(** [load t ~len logical_address] loads a page at the given [logical_address]
and returns a {!type:slice}. [len] (defaults to [1]) is the expected
minimum number of bytes returned.
If the slice does not contains, at least, [len] bytes, [load] returns [None].
[load t ~len:0 logical_address] always returns an empty slice. *)
val invalidate : 'fd t -> off:int -> len:int -> unit
(** [invalidate t ~off ~len] invalidates the cache on [len] bytes from [off]. *)
(** {2 User friendly functions.} *)
(** {3 Binary decoding of integers.}
The functions in this section binary decode integers from byte sequences.
All following functions raise [Invalid_argument] if the space needed at
index [i] to decode the integer is not available.
Little-endian (resp. big-endian) encoding means that least (resp. most)
significant bytes are stored first. Big-endian is also known as network byte
order. Native-endian encoding is either little-endian or big-endian
depending on {!Sys.big_endian}.
32-bit and 64-bit integers are represented by the [int] type, which has more
bits than the binary encoding. Functions that decode signed (resp. unsigned)
8-bit or 16-bit integers represented by [int] values sign-extend (resp.
zero-extend) their result. *)
val get_int8 : 'fd t -> int -> int
val get_uint8 : 'fd t -> int -> int
(*
val get_uint16_ne : 'fd t -> int -> int
val get_uint16_le : 'fd t -> int -> int
val get_uint16_be : 'fd t -> int -> int
val get_int16_ne : 'fd t -> int -> int
val get_int16_le : 'fd t -> int -> int
val get_int16_be : 'fd t -> int -> int
val get_int32_ne : 'fd t -> int -> int32
val get_int32_le : 'fd t -> int -> int32
val get_int32_be : 'fd t -> int -> int32
val get_int64_ne : 'fd t -> int -> int64
val get_int64_le : 'fd t -> int -> int64
val get_int64_be : 'fd t -> int -> int64
*)
val get_string : 'fd t -> len:int -> int -> string
val get_seq : 'fd t -> int -> string Seq.t
val next : 'fd t -> slice -> slice option
val iter : 'fd t -> ?len:int -> fn:(int -> unit) -> int -> unit
val blit_to_bytes :
'fd t -> src_off:int -> bytes -> dst_off:int -> len:int -> unit
(*
val blit_to_bigstring : 'fd t -> src_off:int -> bigstring -> dst_off:int -> len:int -> unit
*)