cachet/lib/cachet.ml

704 lines
22 KiB
OCaml

type bigstring =
(char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t
external swap16 : int -> int = "%bswap16"
external swap32 : int32 -> int32 = "%bswap_int32"
external swap64 : int64 -> int64 = "%bswap_int64"
external get_uint8 : bigstring -> int -> int = "%caml_ba_ref_1"
external set_uint8 : bigstring -> int -> int -> unit = "%caml_ba_set_1"
external get_int32_ne : bigstring -> int -> int32 = "%caml_bigstring_get32"
external set_int32_ne : bigstring -> int -> int32 -> unit
= "%caml_bigstring_set32"
let memcpy src ~src_off dst ~dst_off ~len =
if
len < 0
|| src_off < 0
|| src_off > Bigarray.Array1.dim src - len
|| dst_off < 0
|| dst_off > Bigarray.Array1.dim dst - len
then invalid_arg "memcpy";
let len0 = len land 3 in
let len1 = len lsr 2 in
for i = 0 to len1 - 1 do
let i = i * 4 in
let v = get_int32_ne src (src_off + i) in
set_int32_ne dst (dst_off + i) v
done;
for i = 0 to len0 - 1 do
let i = (len1 * 4) + i in
let v = get_uint8 src (src_off + i) in
set_uint8 dst (dst_off + i) v
done
let memmove src ~src_off dst ~dst_off ~len =
let src = Bigarray.Array1.sub src src_off len in
let dst = Bigarray.Array1.sub dst dst_off len in
Bigarray.Array1.blit src dst
let invalid_argf fmt = Format.kasprintf invalid_arg fmt
module Bstr = struct
type t = bigstring
let of_bigstring x = x
let empty = Bigarray.Array1.create Bigarray.char Bigarray.c_layout 0
let length = Bigarray.Array1.dim
external get : t -> int -> char = "%caml_ba_ref_1"
external get_uint8 : t -> int -> int = "%caml_ba_ref_1"
external get_uint16_ne : t -> int -> int = "%caml_bigstring_get16"
external get_int32_ne : t -> int -> int32 = "%caml_bigstring_get32"
external get_int64_ne : t -> int -> int64 = "%caml_bigstring_get64"
let get_int8 bstr i =
(get_uint8 bstr i lsl (Sys.int_size - 8)) asr (Sys.int_size - 8)
let get_uint16_le bstr i =
if Sys.big_endian then swap16 (get_uint16_ne bstr i)
else get_uint16_ne bstr i
let get_uint16_be bstr i =
if not Sys.big_endian then swap16 (get_uint16_ne bstr i)
else get_uint16_ne bstr i
let get_int16_ne bstr i =
(get_uint16_ne bstr i lsl (Sys.int_size - 16)) asr (Sys.int_size - 16)
let get_int16_le bstr i =
(get_uint16_le bstr i lsl (Sys.int_size - 16)) asr (Sys.int_size - 16)
let get_int16_be bstr i =
(get_uint16_be bstr i lsl (Sys.int_size - 16)) asr (Sys.int_size - 16)
let get_int32_le bstr i =
if Sys.big_endian then swap32 (get_int32_ne bstr i) else get_int32_ne bstr i
let get_int32_be bstr i =
if not Sys.big_endian then swap32 (get_int32_ne bstr i)
else get_int32_ne bstr i
let get_int64_le bstr i =
if Sys.big_endian then swap64 (get_int64_ne bstr i) else get_int64_ne bstr i
let get_int64_be bstr i =
if not Sys.big_endian then swap64 (get_int64_ne bstr i)
else get_int64_ne bstr i
let sub t ~off ~len = Bigarray.Array1.sub t off len
let blit_to_bytes bstr ~src_off dst ~dst_off ~len =
if
len < 0
|| src_off < 0
|| src_off > length bstr - len
|| dst_off < 0
|| dst_off > Bytes.length dst - len
then invalid_arg "Cachet.Bstr.blit_to_bytes";
let len0 = len land 3 in
let len1 = len lsr 2 in
for i = 0 to len1 - 1 do
let i = i * 4 in
let v = get_int32_ne bstr (src_off + i) in
Bytes.set_int32_ne dst (dst_off + i) v
done;
for i = 0 to len0 - 1 do
let i = (len1 * 4) + i in
let v = get_uint8 bstr (src_off + i) in
Bytes.set_uint8 dst (dst_off + i) v
done
let sub_string bstr ~off ~len =
let buf = Bytes.create len in
blit_to_bytes bstr ~src_off:off buf ~dst_off:0 ~len;
Bytes.unsafe_to_string buf
let to_string bstr = sub_string bstr ~off:0 ~len:(length bstr)
let is_empty bstr = length bstr == 0
let is_prefix ~affix bstr =
let len_affix = String.length affix in
let len_bstr = length bstr in
if len_affix > len_bstr then false
else
let max_idx_affix = len_affix - 1 in
let rec go idx =
if idx > max_idx_affix then true
else if affix.[idx] != bstr.{idx} then false
else go (succ idx)
in
go 0
let is_infix ~affix bstr =
let len_affix = String.length affix in
let len_bstr = length bstr in
if len_affix > len_bstr then false
else
let max_idx_affix = len_affix - 1 in
let max_idx_bstr = len_bstr - len_affix in
let rec go idx k =
if idx > max_idx_bstr then false
else if k > max_idx_affix then true
else if k > 0 then
if affix.[k] == bstr.{idx + k} then go idx (succ k)
else go (succ idx) 0
else if affix.[0] = bstr.{idx} then go idx 1
else go (succ idx) 0
in
go 0 0
let is_suffix ~affix bstr =
let max_idx_affix = String.length affix - 1 in
let max_idx_bstr = length bstr - 1 in
if max_idx_affix > max_idx_bstr then false
else
let rec go idx =
if idx > max_idx_affix then true
else if affix.[max_idx_affix - idx] != bstr.{max_idx_bstr - idx} then
false
else go (succ idx)
in
go 0
exception Break
let for_all sat bstr =
try
for idx = 0 to length bstr - 1 do
if sat bstr.{idx} == false then raise_notrace Break
done;
true
with Break -> false
let exists sat bstr =
try
for idx = 0 to length bstr - 1 do
if sat bstr.{idx} then raise_notrace Break
done;
false
with Break -> true
let equal a b =
if length a == length b then
try
let len = length a in
let len0 = len land 3 in
let len1 = len lsr 2 in
for i = 0 to len1 - 1 do
let i = i * 4 in
if get_int32_ne a i <> get_int32_ne b i then raise_notrace Break
done;
for i = 0 to len0 - 1 do
let i = (len1 * 4) + i in
if get_uint8 a i != get_uint8 b i then raise_notrace Break
done;
true
with Break -> false
else false
let with_range ?(first = 0) ?(len = max_int) bstr =
if len < 0 then invalid_arg "Cachet.Bstr.with_range";
if len == 0 then empty
else
let bstr_len = length bstr in
let max_idx = bstr_len - 1 in
let last =
match len with
| len when len = max_int -> max_idx
| len ->
let last = first + len - 1 in
if last > max_idx then max_idx else last
in
let first = if first < 0 then 0 else first in
if first = 0 && last = max_idx then bstr
else sub bstr ~off:first ~len:(last + 1 - first)
let with_index_range ?(first = 0) ?last bstr =
let bstr_len = length bstr in
let max_idx = bstr_len - 1 in
let last =
match last with
| None -> max_idx
| Some last -> if last > max_idx then max_idx else last
in
let first = if first < 0 then 0 else first in
if first > max_idx || last < 0 || first > last then empty
else if first == 0 && last = max_idx then bstr
else sub bstr ~off:first ~len:(last + 1 - first)
let is_white chr = chr == ' '
let trim ?(drop = is_white) bstr =
let len = length bstr in
if len == 0 then bstr
else
let max_idx = len - 1 in
let rec left_pos idx =
if idx > max_idx then len
else if drop bstr.{idx} then left_pos (succ idx)
else idx
in
let rec right_pos idx =
if idx < 0 then 0
else if drop bstr.{idx} then right_pos (pred idx)
else succ idx
in
let left = left_pos 0 in
if left = len then empty
else
let right = right_pos max_idx in
if left == 0 && right == len then bstr
else sub bstr ~off:left ~len:(right - left)
let fspan ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr =
if min < 0 then invalid_arg "Cachet.Bstr.fspan";
if max < 0 then invalid_arg "Cachet.Bstr.fspan";
if min > max || max == 0 then (empty, bstr)
else
let len = length bstr in
let max_idx = len - 1 in
let max_idx =
let k = max - 1 in
if k > max_idx then max_idx else k
in
let need_idx = min in
let rec go idx =
if idx <= max_idx && sat bstr.{idx} then go (succ idx)
else if idx < need_idx || idx == 0 then (empty, bstr)
else if idx == len then (bstr, empty)
else (sub bstr ~off:0 ~len:idx, sub bstr ~off:idx ~len:(len - idx))
in
go 0
let rspan ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr =
if min < 0 then invalid_arg "Cachet.Bstr.rspan";
if max < 0 then invalid_arg "Cachet.Bstr.rspan";
if min > max || max == 0 then (bstr, empty)
else
let len = length bstr in
let max_idx = len - 1 in
let min_idx =
let k = len - max in
if k < 0 then 0 else k
in
let need_idx = max_idx - min in
let rec go idx =
if idx >= min_idx && sat bstr.{idx} then go (pred idx)
else if idx > need_idx || idx == max_idx then (bstr, empty)
else if idx == -1 then (empty, bstr)
else
let cut = idx + 1 in
(sub bstr ~off:0 ~len:cut, sub bstr ~off:cut ~len:(len - cut))
in
go 0
let span ?(rev = false) ?min ?max ?sat bstr =
match rev with
| true -> rspan ?min ?max ?sat bstr
| false -> fspan ?min ?max ?sat bstr
let ftake ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr =
if min < 0 then invalid_arg "Cachet.Bstr.ftake";
if max < 0 then invalid_arg "Cachet.Bstr.ftake";
if min > max || max == 0 then empty
else
let len = length bstr in
let max_idx = len - 1 in
let max_idx =
let k = max - 1 in
if k > max_idx then max_idx else k
in
let need_idx = min in
let rec go idx =
if idx <= max_idx && sat bstr.{idx} then go (succ idx)
else if idx < need_idx || idx == 0 then empty
else if idx == len then bstr
else sub bstr ~off:0 ~len:idx
in
go 0
let rtake ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr =
if min < 0 then invalid_arg "Cachet.Bstr.rtake";
if max < 0 then invalid_arg "Cachet.Bstr.rtake";
if min > max || max == 0 then empty
else
let len = length bstr in
let max_idx = len - 1 in
let min_idx =
let k = len - max in
if k < 0 then 0 else k
in
let need_idx = max_idx - min in
let rec go idx =
if idx >= min_idx && sat bstr.{idx} then go (pred idx)
else if idx > need_idx || idx == max_idx then empty
else if idx == -1 then bstr
else
let cut = idx + 1 in
sub bstr ~off:cut ~len:(len - cut)
in
go 0
let take ?(rev = false) ?min ?max ?sat bstr =
match rev with
| true -> rtake ?min ?max ?sat bstr
| false -> ftake ?min ?max ?sat bstr
let fdrop ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr =
if min < 0 then invalid_arg "Cachet.Bstr.fspan";
if max < 0 then invalid_arg "Cachet.Bstr.fspan";
if min > max || max == 0 then bstr
else
let len = length bstr in
let max_idx = len - 1 in
let max_idx =
let k = max - 1 in
if k > max_idx then max_idx else k
in
let need_idx = min in
let rec go idx =
if idx <= max_idx && sat bstr.{idx} then go (succ idx)
else if idx < need_idx || idx == 0 then bstr
else if idx == len then bstr
else sub bstr ~off:idx ~len:(len - idx)
in
go 0
let rdrop ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr =
if min < 0 then invalid_arg "Cachet.Bstr.rspan";
if max < 0 then invalid_arg "Cachet.Bstr.rspan";
if min > max || max == 0 then bstr
else
let len = length bstr in
let max_idx = len - 1 in
let min_idx =
let k = len - max in
if k < 0 then 0 else k
in
let need_idx = max_idx - min in
let rec go idx =
if idx >= min_idx && sat bstr.{idx} then go (pred idx)
else if idx > need_idx || idx == max_idx then bstr
else if idx == -1 then empty
else
let cut = idx + 1 in
sub bstr ~off:0 ~len:cut
in
go 0
let drop ?(rev = false) ?min ?max ?sat bstr =
match rev with
| true -> rdrop ?min ?max ?sat bstr
| false -> fdrop ?min ?max ?sat bstr
end
external hash : (int32[@unboxed]) -> int -> (int32[@unboxed])
= "cachet_hash_mix_intnat" "caml_hash_mix_intnat"
[@@noalloc]
let hash h d = Int32.to_int (hash h d)
type slice = { offset: int; length: int; payload: bigstring }
let pp_slice ppf { offset; length; _ } =
Format.fprintf ppf "{ @[<hov>offset= %x;@ length= %d;@] }" offset length
(* Counter Trailing Zero *)
let unsafe_ctz n =
let t = ref 1 in
let r = ref 0 in
while n land !t = 0 do
t := !t lsl 1;
incr r
done;
!r
let bstr_of_slice ?(logical_address = 0) { offset; length; payload } =
if logical_address < 0 then invalid_arg "Cachet.bstr_of_slice";
if logical_address == 0 || logical_address == offset then payload
else if logical_address > offset + length then
invalid_arg "Cachet.bstr_of_slice"
else
let pagesize = unsafe_ctz offset in
let off = logical_address land ((pagesize lsl 1) - 1) in
let len = length - off in
Bstr.sub payload ~off ~len
type metrics = { mutable cache_hit: int; mutable cache_miss: int }
let metrics () = { cache_hit= 0; cache_miss= 0 }
type 'fd t = {
arr: slice option array
; fd: 'fd
; map: 'fd map
; pagesize: int
; cachesize: int
; metrics: metrics
}
and 'fd map = 'fd -> pos:int -> int -> bigstring
let fd { fd; _ } = fd
let pagesize { pagesize; _ } = 1 lsl pagesize
let copy t =
{
arr= Array.make (1 lsl t.cachesize) None
; fd= t.fd
; map= t.map
; pagesize= t.pagesize
; cachesize= t.cachesize
; metrics= metrics ()
}
(* XXX(dinosaure): power of two. *)
let pot x = x land (x - 1) == 0 && x != 0
let make ?(cachesize = 1 lsl 10) ?(pagesize = 1 lsl 12) ~map fd =
if pot cachesize = false || pot pagesize = false then
invalid_arg "Chat.make: cachesize or pagesize must be a power of two";
let arr = Array.make cachesize None in
let pagesize = unsafe_ctz pagesize in
let cachesize = unsafe_ctz cachesize in
let metrics = metrics () in
{ arr; fd; map; pagesize; cachesize; metrics }
let load t logical_address =
let page = logical_address lsr t.pagesize in
let payload = t.map t.fd ~pos:(page lsl t.pagesize) (1 lsl t.pagesize) in
let length = Bigarray.Array1.dim payload in
let slice = { offset= page lsl t.pagesize; length; payload } in
let hash = hash 0l slice.offset land ((1 lsl t.cachesize) - 1) in
t.arr.(hash) <- Some slice;
slice
let none : slice option = None
let cache_miss t = t.metrics.cache_miss
let cache_hit t = t.metrics.cache_hit
let map ({ fd; map; _ } as t) ~pos:logical_address logical_len =
let page = logical_address lsr t.pagesize in
let pos = page lsl t.pagesize in
(* round-down *)
let rem = logical_address - pos in
let len = rem + logical_len in
let len =
(* round-up *)
if ((1 lsl t.pagesize) - 1) land len != 0 then
(len + (1 lsl t.pagesize)) land lnot ((1 lsl t.pagesize) - 1)
else len
in
let off = logical_address land ((t.pagesize lsl 1) - 1) in
if len <= 1 lsl t.pagesize then begin
let hash = hash 0l (page lsl t.pagesize) land ((1 lsl t.cachesize) - 1) in
match t.arr.(hash) with
| Some { offset; length; payload } when offset == page lsl t.pagesize ->
t.metrics.cache_hit <- t.metrics.cache_hit + 1;
let len = Int.min (length - off) logical_len in
Bigarray.Array1.sub payload off len
| Some _ | None ->
t.metrics.cache_miss <- t.metrics.cache_miss + 1;
let { length; payload; _ } = load t logical_address in
let len = Int.min (length - off) logical_len in
Bigarray.Array1.sub payload off len
end
else begin
t.metrics.cache_miss <- t.metrics.cache_miss + 1;
let bstr = map fd ~pos len in
let len = Int.min (Bigarray.Array1.dim bstr - off) logical_len in
Bigarray.Array1.sub bstr off len
end
let load t ?(len = 1) logical_address =
if len > 1 lsl t.pagesize then
invalid_arg "Cachet.load: you can not load more than a page";
if logical_address < 0 then
invalid_argf "Cachet.load: a logical address must be positive (%08x)"
logical_address;
let page = logical_address lsr t.pagesize in
let hash = hash 0l (page lsl t.pagesize) land ((1 lsl t.cachesize) - 1) in
let offset = logical_address land ((t.pagesize lsl 1) - 1) in
match t.arr.(hash) with
| Some slice as value when slice.offset == page lsl t.pagesize ->
t.metrics.cache_hit <- t.metrics.cache_hit + 1;
if slice.length - offset >= len then value else none
| Some _ | None ->
t.metrics.cache_miss <- t.metrics.cache_miss + 1;
let slice = load t logical_address in
if slice.length - offset >= len then Some slice else none
let is_cached t logical_address =
let page = logical_address lsr t.pagesize in
let hash = hash 0l (page lsl t.pagesize) land ((1 lsl t.cachesize) - 1) in
match t.arr.(hash) with
| Some slice -> slice.offset == page lsl t.pagesize
| None -> false
let invalidate t ~off:logical_address ~len =
if logical_address < 0 || len < 0 then
invalid_arg
"Cachet.invalidate: the logical address and/or the number of bytes to \
invalid must be positives";
let start_page = logical_address lsr t.pagesize in
let end_page = (logical_address + len) lsr t.pagesize in
let mask = (1 lsl t.cachesize) - 1 in
for i = start_page to end_page - 1 do
t.arr.(hash 0l (i lsl t.pagesize) land mask) <- None
done
let is_aligned x = x land ((1 lsl 2) - 1) == 0
exception Out_of_bounds of int
let[@inline never] out_of_bounds offset = raise (Out_of_bounds offset)
let get_uint8 t logical_address =
match load t ~len:1 logical_address with
| Some { payload; _ } ->
let offset = logical_address land ((1 lsl t.pagesize) - 1) in
Bstr.get_uint8 payload offset
| None -> out_of_bounds logical_address
let get_int8 t logical_address =
(get_uint8 t logical_address lsl (Sys.int_size - 8)) asr (Sys.int_size - 8)
let blit_to_bytes t ~src_off:logical_address buf ~dst_off ~len =
if len < 0 || dst_off < 0 || dst_off > Bytes.length buf - len then
invalid_arg "Cachet.blit_to_bytes";
let off = logical_address land ((1 lsl t.pagesize) - 1) in
if is_aligned off && (1 lsl t.pagesize) - off >= len then begin
match load t ~len logical_address with
| None -> out_of_bounds logical_address
| Some slice ->
Bstr.blit_to_bytes slice.payload ~src_off:off buf ~dst_off:0 ~len
end
else
for i = 0 to len - 1 do
let v = get_uint8 t (logical_address + i) in
Bytes.set_uint8 buf (dst_off + i) v
done
let get_string t ~len logical_address =
let buf = Bytes.create len in
blit_to_bytes t ~src_off:logical_address buf ~dst_off:0 ~len;
Bytes.unsafe_to_string buf
let get_uint16_ne t logical_address =
let str = get_string t ~len:2 logical_address in
String.get_uint16_ne str 0
let get_uint16_le t logical_address =
let str = get_string t ~len:2 logical_address in
String.get_uint16_le str 0
let get_uint16_be t logical_address =
let str = get_string t ~len:2 logical_address in
String.get_uint16_be str 0
let get_int16_ne t logical_address =
let str = get_string t ~len:2 logical_address in
String.get_int16_ne str 0
let get_int16_le t logical_address =
let str = get_string t ~len:2 logical_address in
String.get_int16_le str 0
let get_int16_be t logical_address =
let str = get_string t ~len:2 logical_address in
String.get_int16_be str 0
let get_int32_ne t logical_address =
let str = get_string t ~len:4 logical_address in
String.get_int32_ne str 0
let get_int32_le t logical_address =
let str = get_string t ~len:4 logical_address in
String.get_int32_le str 0
let get_int32_be t logical_address =
let str = get_string t ~len:4 logical_address in
String.get_int32_be str 0
let get_int64_ne t logical_address =
let str = get_string t ~len:8 logical_address in
String.get_int64_ne str 0
let get_int64_le t logical_address =
let str = get_string t ~len:8 logical_address in
String.get_int64_le str 0
let get_int64_be t logical_address =
let str = get_string t ~len:8 logical_address in
String.get_int64_be str 0
let rec get_seq t logical_address () =
match load t logical_address with
| Some { offset; payload; length; _ } ->
let off = logical_address land ((1 lsl t.pagesize) - 1) in
let len = length - off in
let buf = Bytes.create len in
Bstr.blit_to_bytes payload ~src_off:off buf ~dst_off:0 ~len;
let str = Bytes.unsafe_to_string buf in
let next = get_seq t (offset + (1 lsl t.pagesize)) in
Seq.Cons (str, next)
| None -> Seq.Nil
let next t slice = load t (slice.offset + (1 lsl t.pagesize))
let naive_iter_with_len t len ~fn logical_address =
for i = 0 to len - 1 do
fn (get_uint8 t (logical_address + i))
done
let iter_with_len t len ~fn logical_address =
if len > 1 lsl t.pagesize then naive_iter_with_len t len ~fn logical_address
else begin
match load t logical_address with
| Some { offset; payload; length } ->
let off = logical_address land ((1 lsl t.pagesize) - 1) in
let max = Int.min (length - off) len in
for i = 0 to max - 1 do
fn (Bstr.get_uint8 payload (off + i))
done;
if max < len then begin
let logical_address = offset + (1 lsl t.pagesize) in
match load t logical_address with
| Some { payload; length; _ } ->
if len - max > length then
out_of_bounds (logical_address + (len - max - 1));
for i = 0 to len - max - 1 do
fn (Bstr.get_uint8 payload i)
done
| None -> out_of_bounds logical_address
end
| None -> out_of_bounds logical_address
end
let iter t ?len ~fn logical_address =
match len with
| Some len -> iter_with_len t len ~fn logical_address
| None ->
let rec go logical_address =
match load t logical_address with
| Some { offset; payload; length } ->
let off = logical_address land ((1 lsl t.pagesize) - 1) in
let len = length - off in
for i = 0 to len - 1 do
fn (Bstr.get_uint8 payload (off + i))
done;
go (offset + (1 lsl t.pagesize))
| None -> ()
in
go logical_address
let syscalls t ~logical_address ~len =
let pagesize = 1 lsl t.pagesize in
let len = (logical_address land (pagesize - 1)) + len in
let len =
if (pagesize - 1) land len != 0 then
(len + pagesize) land lnot (pagesize - 1)
else len
in
len lsr t.pagesize